
X

Y

0
P

Q
-T

-R

Tangent line

S
T=S⊞S=2*S

y-R

-yR

y2 = x3 + ax + b

y

-y

y = ±√y2

x

R=P⊞Q

0

Key generation
1.Install Python 3.9.1.
2.Launch script Packages for joining a libraries.
3.Launch file ECC.
4.If window is escaping, then open hiden windows
 in icon near the Start icon.

Elliptic Curve Cryptography keys generation
ECC Public Parameters: PP = (EC, G, p), G=(xG, yG); ElGamal CS Public Parameters: PP = (p, g)

y2 = x3 + ax + b mod p

G is a generator or base point of EC.
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p; |n|=|p|=256
bits: 1<xG<n, 1<yG<n.
PrKA=z <-- randi; z< n, max|z|<=256 bits.
PuKA = z*G = A(xA, yA); max|A|=2•256=512 bits.

 Security consideration
Let PrKA=z and PuKA=z*G then it is infeasible to find z from the equation PuKA=z*G when PuKA and G are given.

114_003 ECC_KAP-AKAP

 114_003 ECC_KAP-AKAP Page 1

y2 = x3 + ax + b mod p

PrK = z It is a random generated number of 256 bit length less then p.
1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

PuK = A = zG It is a an elliptic curve point with coordinates (xA, yA).

A(xA, yA) is obtained by z-times adding generator (base point G).
71851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b129
8d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f

256 bits length or a little less

PuK = A(xA, yA) has 512 bits length
since it represents two coordinates
(xA, yA) both having 256 bit length

Remark: 2 - Export private and public keys -->
--> [Select folder] means that folder must be selected, not opened.

Compressed form:
PuK = A have its symmetric point -A with the same coordinate xA.

Take in mind that EC coordinates are computed mod p.
If coordinate yA is odd number, then coordinate is an even number.
And vice versa.
It can be seen from the example below when p=11.

xA

yA

AyA

xA
y mod 11 (-y) mod 11

1 odd even -1=10

 114_003 ECC_KAP-AKAP Page 2

Diffie-Hellman Key Agreement Protocol (DH KAP)

Public Parameters PP=(p,g)

Open
Communication

Channel

-A-yA

xA

G

y mod 11 (-y) mod 11

1 odd even -1=10

2 even odd -2=9

3 odd even -3=8

4 even odd -4=7

5 odd even -5=6

6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

9 odd even -9=2

10 even odd -10=1

It allows to reduce the PuK = A representation almost twice.
The even coordinate yA is encoded by prefix 02.
The odd coordinate yA is encoded by prefix 03.
If PuK is presented in uncompressed form than it is encoded by prefix 04.

We see that in example above coordinate yA is odd
8d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f
Then PuK is represented by coordinate xA with prefix 03 in the following way:
0371851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b129

To perform the computations in EC the algorithmmust performs the following steps:
1.Take xA and put it in equation y2 = x3 + ax + b mod p to obtain y2

2.Extract square root from y2 to obtain two coordinate values yA and -yA.

3.If Prefix is 02 then take an even coordinate, e.g. yA, otherwice take an odd coordinate.

Animation

 114_003 ECC_KAP-AKAP Page 3

Signature creation for message M using ECDSA
Public Parameters: PP = (EC, G, p), G=(xG, yG);

PrKA=z <-- randi; z< n, max|z|<=256 bits.
PuKA=z*G=A=(xA, yA); max|A|=2•256=512 bits.

Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

h = H(M)=SHA256(M);1.
i <-- randi; |i|≤ 256 bits;2.
R = i*G = i*(xG, yG) = (xR, yR);3.
r = xR mod p; 4.
s = (h + z • r) • i-1 mod p; |s|≤ 256 bits; // Since p is prime, then exists i-1 mod p.5.
 // >> s_m1=mulinv(s,p) % in Octave

Sign(PrKECC=z, h) = ϭ = (r, s) 6.

EC-DH-Key Agreement Protocol EC-DH-KAP

EC-DH-Authenticated Key Agreement Protocol EC-DH-AKAP

 114_003 ECC_KAP-AKAP Page 4

Let Alice computed the following TA value:
e0d473945a263cc22970731ba3070472358e514eff1f78464610ad07a952cece
6c08280f3559a79996ad2839143e252ef7b90da5e284cc73cf3d8922741baf91
Then
>> hA=sha256('e0d473945a263cc22970731ba3070472358e514eff1f78464610ad07a952cece6c08280f35
59a79996ad2839143e252ef7b90da5e284cc73cf3d8922741baf91')

hA = 38CC536D27E3890984BD3737B91429701A8463D5A28E2592F4B8B3FCDE5D3E5F
>> length(h)
ans = 64 % length of h-value is 64 hexadecimal numbers, i.e. 256 bits corresponding to function sha256

The signature Alice is placing on this h-value hA.

Alice: PrKA = z; PuKA = z*G = A
 PuKB = B

Bob: PrKB = y; PuKB = y*G = B
 PuKA = A

 114_003 ECC_KAP-AKAP Page 5

